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Abstract

The construction of the-product proposed by Fedosov is implemented in terms of the theory of
fibre bundles. The geometrical origin of the Weyl algebra and the Weyl bundle is shown. Several
properties of the product in the Weyl algebra are proved. Symplectic and abelian connections in the
Weyl algebra bundle are introduced. Relations between them and the symplectic connection on a
phase spackl are established. Elements of differential symplectic geometry are included. Examples
of the Fedosov formalism in quantum mechanics are given.
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1. Introduction

The standard formulation of quantum mechanics in terms of a complex Hilbert space
and linear operators is mainly applied for systems, whose classical limit may be de-
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scribed on a phase spaB&”. There are two reasons for this situation: the fundamen-
tal operatorsg’, p;,i =1, ..., 2n, are well defined by the Dirac quantization scheme

[1] only in the case ofR?’, and the operator orderings are based on the Fourier
transform[2—4].

Unless we agree to weaken the foregoing assumptidhsto deal with other
guantum systems it is necessary to use geometric quantizg@jdh or deformation
guantization.

Classical mechanics is a physical theory which works perfectly on arbitrary differential
manifolds. From this reason shortly after presenting a standard version of quantum theory,
researchers began to look for an equivalent formulation of quantum mechanics based on
differential geometry. The first complete version of quantum theory in the language of
the theory of manifolds appeared in the middle of the XXth century, when M@]al
using previous works by WeyB], Wigner[10] and Groenewold11] presented quantum
mechanics as a statistical theory. His results are only valid for theR%sé{owever, the
paper by Moyal contains the seminal ideas about deformation quantization, since the main
result of this work is the substitution of the point-wise product of functions in phase space
for a new product which is a formal power seriegin

A modern version of Moyal’s deformation quantization on an arbitrary differential man-
ifold was proposed by Bayen et §l2] in 1978. The mathematical structure of this formu-
lation of the quantum theory is based, like Hamiltonian classical mechanics, on differential
geometry of symplectic spaces. Observables are smooth real functions on a phase space and
states are represented by functionals. Macroworld appears in this formalism as the limit of
the quantum reality for the Planck constartending to 0.

The list of axioms constituting deformation quantization looks as follows:

(i) a state of a physical system is described om-anensional phase spabkt
(ii) an observable is a real smooth functionhdn
(iii) for every complex-valued smooth functiong g, #) of C°°(M) the x-product fulfills
the following conditions:

@  frg=Y ('f) M g).

=0
where M,(-, -) is a bidifferential operator oM (see definition later, formula

(1.1).

(b) The elemend1g represents the ‘usual’ commutative product of functions i.e.
Mo(f8)=f g
Thus, at the classical limit
lim =f-g
poge/ F8= S8
(c) The quasi-Dirac quantization postulate holds
Mi(f g) — Mu(g. /) =2{f g}p.
where{., -} p stands up for Poisson brackets.
(d) Associativity also holds
D (MM (f 8). 1) = My(f: Mu(g, 1)) =0 Vs > 0.

t+u=s



318 M. Gadella et al. / Journal of Geometry and Physics 55 (2005) 316—-352

(e) For the constant function equal to 1, we have
ML, f)=M(£1)=0 Vi>1

Let us comment the postulates written above. Assumptions (i) and (ii) say that the math-
ematical structure of deformation quantization is modelled after the classical Hamiltonian
mechanics. Differences between classical and quantum descriptions appear at the level of
product of functions and representation of states. In the quantum case the product must be
noncommutative. The relation between thiproduct and the usual point-wise multiplica-

tion of functions is established in (iii-b). The classical Lie algebra of functions is determined
by the termas; from (iii-a). Associativity (iii-d) is analogous to the associativity in an al-
gebra of linear operators in traditional quantum mechanics. Linearity of the bidifferential
operatorsM; plus postulate (iii-e) expresses the fact that the measurement of a constant
guantity does not interact with any other measurement.

Let us remind what is a bidifferential operator. Lidtbe an-dimensional differential
manifold and U, ¢) alocal chart on it with coordinates= (4%, . .., ¢"). By a bidifferential
operatorM; (-, -) : C°(M) x C*°(M) — C,we understand the map which locally in a chart
(U, ¢) is a finite linear combination of terms like

9™ f(q) ' 9g(q)
BgH)xr - - (3g™)  (dgL)Pr- - - (3gM)Pn’

wherewy + -+ o, =m, 1+ -+ B =r.

Note that the assumptions of deformation quantization do not give a construction of
the x-product. In the simplest case when the phase spak&'isthere exists a relatiow
between a wide class of functiofisdefined orR?* and linear operator® c L£(#) acting
on a Hilbert spacé{. More information about the class of operators and functions, for
which such a relation exists, can be found113]. The W mapping, known as the Weyl
application, in the two-dimensional case takes the firaj

I(a) L, g € C™(M), (1.1)

. 1 ca P
F=W(R) = s [ ot expliih + na) . 1) . 12)
(27'[) R2
whereF is a linear operator acting i®, (%) is a function characterizing ordering of
operators (however, in this work we will consider the case of Weyl ordering for which
a(hap) = 1), pandqare canonically conjugate coordinates on the phase &fageandq

are self-adjoint operators representing momentum and position, respectively, and fulfilling
the commutation relation

[¢, ] = inl,
Finally, F(, 1) is the Fourier transform of the functiaf(p, ¢) defined by

Foui) = [ F(p.a)expicilip + ua) dp

The generalization of expressi¢h2)to the cas&?" is straightforward.
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Considering the-product as the image of the product of operators by the inverse mapping
W1 of the Weyl applicatioW (with (fiii) = 1) we obtain that

FxG:=WYF.-G)= Fexp(lg 75) G, (1.3)

whereP is the Poisson operator

20 00

<>

P=——-——.
dq dp  dp dq

The arrows indicate the acting direction of the partial differential derivatives. Explicitly

[o,0] r - r
1 ik yF  ¥G
FxG=3 > = <2> R e g (1.4)
r=01=0 "" T o or

The mappingw 1 is called the Weyl correspondence and it constitutes an isomorphism
between some algebra of linear operators and an algebra of functidk&'ofrom this

fact we deduce that the product defined ad..3)is associative. Expressiofik3) and (1.4)

are true only in coordinate systems in which a symplectic faron R? is canonical and
symplectic connection vanishes.

The construction presented above cannot be used in the general case because on an
arbitrary manifold we are not able to introduce the Fourier transform, which is fundamental
for defining the Weyl correspondent®& ! and the Weyl applicatiokV.

As we mentioned before, Rdfl2] does not contain an explicit procedure for obtain-
ing a x-product, only theorems of existence sefproducts for symplectic manifolds are
presented. However, other aspects of this paper have had a great influence in the modern
development of deformation quantization. For instance, the deformation of the algebraic
structure of the classical Poisson alge6fa(M) via thex-product provides an example of
algebra deformation in the sense of Gerstenhfligr Later, in the eighties, the algebraic
deformationa la Gerstenhaber also appeared in relation to quantum gibép®ifferent
aspects about deformation quantization and its applications can be fo{d-62] For
those who are interested in general aspects of quantization deformation we recommend the
reviews[63-66}

The practical realization of deformation quantization on a symplectic manifold was
proposed by Fedosd®7,68] His construction is purely geometric and it is based on the
theory of fibre bundlef9]. Fedosov starts from some symplectic manifold endowed with
a symmetric connection and lifts this connection to the so called Weyl algebra bundle. Next
he builds some new flat connection in the Weyl bundle and shows how to operate on flat
sections of the Weyl algebra bundle in order to defirepaoduct. In[70-75]one can find
several considerations devoted to several aspects of the Fedosov formalism.

The aim of this paper is to present the Fedosov theory as an example of application of
the theory of fibre bundles in physics. Thus, we analyze the construction effheduct,
paying attention to the geometrical aspects using the formalism of fibre bundles. All the
final results presented here are known but we have obtained them applying consequently the
fibre bundle methods and in many cases the proofs are new and easier than the original ones.



320 M. Gadella et al. / Journal of Geometry and Physics 55 (2005) 316—-352

This fact adds a pedagogical value to this work which can complement the monographies
devoted to the Fedosov theory. As we mention before, we are mainly interested in the
geometrical aspects of the Fedosov construction. For that reason we omit some long and
technical proofs not connected directly with the geometrical nature of the topic.

The paper is organized as follows.$ection 2we present some results about symplec-
tic geometry that we will use later. Next sections are devoted to the main mathematical
structures involved on the Fedosov methodSéction 3 starting from the construction of
the Weyl algebra we obtain the Weyl bundle. This algebra is equipped with a symplectic
connection, which is studied in detail 8ection 4 Making the symplectic connection flat
and defining a one-to-one mapping between formal séfigs C°°(M)) and flat sections
of the Weyl bundle, we construct Bection 5a noncommutative associativeproduct on
M. Some examples are presentedaction 6

2. Symplectic geometry

This part is devoted to review some aspects of the geometry of symplectic spaces. We
presenta procedure for defining parallel transport for such spaces and analyze the similarities
and differences between Riemannian and symplectic geometry. The reader interested in the
mathematical aspects of symplectic geometry can find a systematic presentation of this
topic in[76,77]. Physical applications of the symplectic geometry are analyzptBirB81]

A symplectic manifold ¥, ) is a manifoldM equipped with a nondegenerate closed
2-formw, which is called symplectic form. The dimension &1 (w), which is always even,
will be denoted by dinM = 2n.

Let (U;, ;) be some local chart on, ). In this chart the symplectic form may be
written as

w:wijdindqj, L,j=12...,2n.

The well known Darboux theorem establishes that in the neighborhood of eachppoint
of a symplectic manifold there exist local coordinates, (. ., ¢%"), called canonical or
Darboux coordinates, such that the fommay be written by means of these coordinates
as

o =dg" Y Adgt +dg"P Adg? + -+ dg?t A dg" (2.1)
An atlas{(U,, ¢,)}eer consisting of Darboux charts is called Darboux atlas.

As the formw is nondegenerate, it establishes an isomorphibetween tangerit, M
and cotangent ;M spaces at each poipte M, which is defined by:

Ix(Y) = o(Y, X) VY € oM,

where the 1-formy € Ty M is the image of € T, M by I.
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In a local chart U;,¢;) on (M,w) in natural bases{dql,...,dq?"} and
{(8/0g"), ..., (3/0°")} of Ty M andT, M, respectively, we can write that

(Ix)r = wir X"

The inverse mapping ! : TgM — TpM can be obtained by

X = a)ri(lx)i, (22)
wherew' is a covariant tensor for which the following relation holds
a)ijwjk = 5};. (2.3)

The Poisson bracket of two functiongg € C*°(M), is defined as

{£ 8} = —o(I"Mdf). I} (dg)).
In local coordinates

i Of 9

{(fg}=w 3 9]

In fact, it is possible to define a Poisson structure on a manifold without introducing a
symplectic form. In such cases by a Poisson structure on a mahfelé understand an
antisymmetric bilinear mapping, -} : C*°(M) x C*®(M) — C*°(M) fulfilling the Jacobi
identity

{£ g nt+{{h. f1. 8} +{{g. h}. f} =0

and the Leibniz rule

{f gh} = g{f h} +{f gth.

Poisson manifolds M, {-, -}), are natural generalizations of symplectic manifglicis.

The deformation quantization programme works on Poisson maniffs1ds9,73] but
we are going to continue our considerations for the case when the phase space of a system
is some symplectic manifold.

Definition 2.1. A torsion-free connectiol in the tangent bundl&@M is called symplectic
if the induced connectioW in T*M ® T*M fulfills the condition
Vo = 0. (2.4)

In alocal chartU;, ¢;) onM for dim M = 2n the requiremen{2.4)is equivalent to the
system of 22(2n — 1) independent equations

| — Ty - Moy =0, (2.5)
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whererl, are coefficients of the connectish They are symmetric in lower indices because
the connectionis torsion-free. In a Darboux chart all the partial derivaah/g;éaq" vanish,
so the equation syste(@.5)is equivalent to the following one

—Ljik + Iijk = 0,
where
. I
Liji i= wily.

Corollary 2.1. A connectiorV on the symplectic manifol@d/, ») is symplectic iff in every
Darboux chart the coefficients ; are symmetric in all the indicefg, j, k}.

Unlike the Riemannian geometry on a symplectic manifad ) we can define many
symplectic connections. The following statement holds.

Theorem 2.1 (Fedoso\68]). The symplectic connection on a symplectic manifdfdw)
is not unique. The set of coefficients

L = A + e, 11, jk <dimM,

where A;x denotes the coefficients of a tensor symmetric with respect to indices}
and I';j the coefficients of a symplectic connection(dh w), determines a symplectic
connection or{M, w).

Note that locally symplectic connections exist on any symplectic manifold. The con-
struction of a symplectic connection on the whole manifdifl ¢) can be done using a
C>-partition of unity.

Definition 2.2 (Curtis and Miller[82]). A manifold M admits aC°°-patrtition of unity if,
given a locally finite open covel/;};<;, there exists a family of *°-mapsy; : M — [0, 1]
such that the set of points at whigh does not vanish, supgy(), is contained inU;, i.e.
suppfyi) C U, and) ;. v(p) = 1forallp € M.

Theorem 2.2 (Curtis and Miller[82]). Every manifold M admits &°°-partition of unity.

Since Theorem 2.Zholds, on an arbitrary symplectic manifoldZ( ) we build the
symplectic connection on\{, ») following the algorithm:

1. We cover the manifold M, w) with a Darboux atlas{(U;, ¢;)}ic;. According to
Theorem 2.2here exists @°°-partition of unity{v;};c; compatible with{U;};<;.

2. In each chartl(;, ¢;) we define a symplectic connection by giving coefficienTs.{;
symmetric in all the indices.
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3. The coefficients of the symplectic connecti¥ron (M, ) at an arbitrary fixed point
p € M are expressed by

Tia(P) = > wi()(j)i-

iel

Definition 2.3. Let (M, w) be a symplectic manifold with a symplectic connectVnThe
triad (M, w, V) is called Fedosov manifold.

The curvature of a symplectic connecti®ris characterized by a curvature tensor.

Definition 2.4. The curvature tensd® of a symplectic connectio¥ in the tangent bundle
TMis a mappingR : TM x TM x TM — TM fulfilling the relation

R(X,Y)Z = VxVyZ — VyVxZ —Vixn1Z VX,Y,Z € TM. (2.6)

In the natural basifd/dq%), . . ., (3/9¢%*)} of TMthe components of the curvature tensor
are expressed as

a 0 d m 0
R{—,— ) — =R} —.

dq’ 3qk g’ ] dg™
In terms of the Christoffel symbols

, _ar, T
ijk — 3qj aqk
Note that for the symplectic connections of a symplectic manifold we may have different

curvature tensors. For instance, the same symplectic manifold can be equipped with flat (all

the componentffik of curvature tensor vanish) or nonvanishing curvature.

+ I, — T, (2.7)

Theorem 2.3. Letus consider two Fedosov manifoldg, », V) and (M, w, %)N for which
the relation holdsv = V + A (seeTheorem 2.1 The curvature tensors R amelfulfill the
equation

R =R+ r(4),
wherer(A) is some tensor depending only dn

Lowering the upper index irRﬁjk we define a new tensor
Riji := wmi Ry (2.8)
with the following propertie$83,84}

1. The curvature tensor is antisymmetric in the last two indices
Rijxi = —Rijik. (2.9)
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Indeed, from(2.7) and the fact that the connection is symmetric we can see that
R}, = —Rj,;. Making the contractiof2.8) we obtain(2.9).
2. The first Bianchi identity holds

Rijxi + Rikj + Rigjk = 0. (2.10)

Effectively, this identity is equivalent to the relation

It means that

a 9 0 a 0 B a 9 0
Rl— —|—+R|—,— )| —+R|—,— | —=0. (2.11)
dgk’ 3q' ) g/ dq'’" dqJ ) gk dqg’’ dgrk ) dq'
On the other hand, the Lie brackets

0 0
—, —| =0, jk=1,...,2n. (2.12)
dg’’ gk

Moreover, the connectio¥ is symmetric, so that

3 5
Va/aqk@ = Va/aqjaqu, Jk=1,...,2n. (2.13)

From the definition of the curvatu(@.6), involving (2.12)we rewrite the I.h.s. of2.11)
in the form

9 9 9 9
Vasagk Voyaq! P Vasaq Vojaqr o T Vasaq Vojoqs k- Vajogi Va/aq'aqu

d 0
+ Vijaqi Va/aqk@ — Vajagk Vasagi o

From(2.13)we can see that the foregoing expression vanishes.
3. The second Bianchi identity is verified, i.e.

Rujit;i + Rujiky + Rmjiie = 0.

Indeed, this identity is equivalent to the relation

It is always possible to consider locally such a chart &h ¢, V) that at an arbitrary
fixed pointp € M all the coefficientsl™, disappear. If we compute all the covariant
derivatives from(2.14)atp, we obtain that the L.h.s. ¢2.14)equals

R I R )
9q'dgk  9q'dq'  3q'dqg'  dq'ogk  3gkdql  9gFog
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It is easy to see that in fact properties 1-3 hold for any curvature tensor of a symmetric
connection. Now we are going to present some features of the symplectic curvature
tensors exclusivel{B3].

. The symplectic curvature tensBy;; is symmetric in the first two indices, i.e.

Rijxi = Rji. (2.15)

The proof is as follows. From the Darboux theorem we can always find a system of
coordinates in which the symplectic tensay is locally constant. In such a chart we
have

aly LGk

Riju = — - ac;ﬁ + 0" TyjTike — @™ Tuje iz (2.16)
oyl

Rjin = ijz - ac;; + & Lyt Dje — @™ Dyie iz - (2.17)

Permuting repeated indices~ u in (2.17)we see that

oy ol

ogk aq’

R = + 0" Iy Dj — 0" i Ty

Remembering thab** = —»"* and using the fact that in Darboux coordinates the co-
efficientsI";; are symmetric in all the indices we obtain tHRafy = Rjix.
. For a symplectic curvature tensor the following relation holds

Rijii + Rjkii + Ruij + Rijje = 0. (2.18)
Indeed, from the first Bianchi identif2.10)we get

Rijui + Rigje + Riwgj = 0, Rjiti + Rjiik + Rjui =0,

Ruiji + Ryjii + Ruij = 0, Riijk + Rixij + Ryjxi = 0.

From(2.9) and (2.15adding formulag2.19)we conclude that Eq2.16)is always true
for any symplectic curvature.

Let us compute the number of independent components of the tBgoIAs usually,

we assume that di = 2n. From the properties of antisymmett2.9) and symmetry

(2.15)we obtain that the tensak; hasn?(2n + 1)(21 — 1) independent elements. The

first Bianchiidentity(2.10)is a new constraint if and only if all the indicgés, / are different
in R;j. It means tha(2.10)provides us

(%)
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new equations. The propert2.18)can now be reduced by the symmetry of the tensor or
by the first Bianchi identity only if all the indices j, k, [ are different, so we have

2n

4
independent conditions. Hence, the symplectic curvature tetigphas

n(2n — 1)(n(2n + 1) — 3n(2n — 2) — (20 — 2)(2n — 3))

independent components. For example, on a two-dimensional Fedosov maifeld )
its curvature tensor has three independent components. Faf dind the amount of inde-
pendent elements d¥;;; increases to 47. Whevl is a Riemannian manifold, the number
of independent components of the curvature tensor would be equal to 1 and 20, respectively.

Apart from the curvature tensa; ;; the geometry of a symplectic space can be charac-
terized by a Ricci tensor and a scalar of curvature.

Definition 2.5. The Ricci tensor on a Fedosov manifold (w, V) is defined by
Kij == a)klR]ikj = Ri'{kj'
The Ricci tensor is symmetric, i.&;; = K j;.

Corollary 2.2. On any Fedosov manifold
o’ K;j = 0. (2.19)
This conclusion is a straightforward consequence of the fact that the Ricci t€pser

symmetric and/ antisymmetric. Fronf2.19)we can see that the scalar of any symplectic
curvature defined ak := /' K;; isalways 0.

3. The Weyl bundle
In this section we present the construction of a bundle, which plays a fundamental role
in the definition of thex-product on a symplectic manifold. Let us start defining a formal

series over a vector space.

Definition 3.1 (Bordemann et a[71]). Let A be a fixed real number and some vector
space. A formal series in the formal parameétés each expression of the form

)
v[A] = Zkivi, v;i € V.

i=0



M. Gadella et al. / Journal of Geometry and Physics 55 (2005) 316—-352 327

The set of formal serieg] 1] constitutes a vector space. Addition and multiplication by
a scalam € C are defined, respectively, by

o o)
ulp ] + ol =D Awi+v).  a-vp] =D Aawv).
i=0 i=0
The vector space of formal series over the vector spdnehe parametex will be denoted
by V[ 1] and can be considered as a direct sum
o
vl =&Vvi. vi=vVvi
i=1

Let (M, ») be a symplectic manifold aritfy M the cotangent space ovérto M at the point

p of M. The spaceT(; M) is a symmetrized tensor productGf M ©"imes. .. © 7M. It
is spanned by

1
Ul']_@"'@vi[::ﬁ E Uail®"'®vai[s
" allpermutations

wherev;,, ..., v, € T;M.

Definition 3.2. A preweyl vector spac@; M at the poinip € M is the direct sum

o0
* . * I
PiM = (15 MY
=0

We introduce the formal series over the preweyl vector space as follows.

Definition 3.3. A Weyl vector spacé’;Ml[h]l is the vector space of formal series over the
preweyl vector space; M in the formal parametef.

For further physical applications we usually identifywith the Planck constant. The
elements of’; M[#] can be written in the form

o0 o0
Upl[h]l = Z Z hkdk,il,...,ils Aak,iy,...,i; € P;M
k=0 [=0

Forl = 0 we have just the sul ;> hray.

Definition 3.4 (Fedoso\68]). The degree, degy ;,.....;,, of a vectory ;, ... ;, of the Weyl
vector space’; M[ 7] equals Z + 1.



328 M. Gadella et al. / Journal of Geometry and Physics 55 (2005) 316—-352

Our aim is to define a product (denoted )yof elements of the Weyl spade; M[ 7]
which equips the Weyl space with an algebra structure. Such a product must give a symmetric
tensor. Moreover, we require that deg(b) = dega + degb.

Let us assume that the elements of the Weyl vector space are written in a natural basis
constructed in terms of symmetric tensor productglot, . . ., dg®'}, where dimM = 2n,
andX, € TpM is some fixed vector of the spaggM tangent taM at the pointp. Let us
denote the components Xfin the basig(9/dg"). . . .. (3/3¢g*")} by X},.

Itis obvious that for everyy ;, i € P;M|[h]|
agiy,...ii(Xp, ..., Xp) = ak,il,.i.,ilxél e Xg
~————
I-times
is acomplex number and we can handle, . ;,(Xp, ..., Xp) as apolynomial ofth degree

in the components of the vect#l,. We extend this observation to each element of the Weyl
algebraPy M[h] and considewp[A]( X)) like a function ofxl ..., X%” of the form

o0 o0
vpl PI(Xp) = D Pragiy. i Xp - X, (3.1)
k=0 [=0

We do not define any topology in the space of functions of the (@t
By dup[A]/0X, we understand the derivative of the su@1) as a function of

Definition 3.5 (Fedoso\67]). The product : PgM[1r] x PyM[1h] — PyM[£] of two
elementsa, b € Py;M[1] is an elementc € P;M[ 7] such that for eachXp € T, M the
following equality holds

(Xp) = a(Xp) o b(Xp) :

— io: 1 (Ih) t WL L it a.t a(Xp) 0'b(Xp) (3.2)

i\ 2 3)(;)1...3)(;; BX,]}---BX{)".

The pair (P M[ 7], o) is a noncommutative associative algebra called the Weyl algebra
and denoted bP* M, [ #]. Let us simply enumerate some properties of dhgroduct:

1. Theo-product is independent of the chart. This result is a straightforward consequence
of the fact that all the elements appearing on the r.h.s. of the for(B.pare scalars.

2. Theo-product is associative but in general nonabelian. The associativity effiheduct
may be roughly explained in the following way. The elemex(sy) andb(X ) are poly-
nomials inX"’s. Let us formally substitut&’ — ¢', where byg’ we denote the Cartesian
coordinates on the symplectic spaB&1, w). After this substitution the product for poly-
nomials in variableg’’s defined likg(3.2)is a associative Moyal product (see the relation
(1.3)). Indeed, in Darboux coordinates in the two-dimensional caseawithdg? A dg?,
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the formula(3.2) may be written as

L' S,y dalXp) ¥'b(Xp)
aOb_t;t! (2) z;( b d(xXBy—Ta(x2) a(XYa(X3) "

which is exactly(1.4).
3. The degree verifies that

deg@ o b) = dega + degb. (3.3)

This statement, according tifinition (3.2) is obvious.

In order to enlighten the above construction oféhgroduct let us consider the following
example. Let¥1, ) be a two-dimensional symplectic manifold. From the Darboux theorem
(2.1) we can choose a char/{, ¢;) in such a manner that at a fixed pomte M and in

some neighborhood of it we have that= dg® A dg*. It means that a chart¥, ¢;) in a
natural basigd/dq*, 3/94°%} the tensor’/ takes the form

a)ij = O 1 .
-10
Let us consider the-product of elementa = ag[11) andb = bg [12], where the symbol

[- - -] denotes the symmetrization in the indices inside the bracket. E3dthiwe obtain
a(X) o b(X) = ao,nXle o bo,lzXle
lylyly2 , 1[I0 1yl
= a0,1100,12X X" X X + F E -1-2ag,11b0,12X X"
So, finally
€0,[11,12] = a0,11b0,12, c1[11) = i - ao,11b0,12.
We have worked until now at an arbitrary fixed pomtof the symplectic manifold
(M, w). But our aim is to define the-product on the whole manifold. To achieve it we need

to introduce a new object, so called the Weyl algebra bundle. For a definition of fibre bundle
see, for instance, REB5].

Definition 3.6. The collection of all the Weyl algebras, i.e.

P*MIA] = | P*MplH]

peM

is a vector bundle which is also an algebra bundle and it is called the Weyl algebra bundle.
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Note that the structure of the Weyl algebra bundle looks as follows. THE*set] /1]
is the total space. The symplectic spadég () is the base space. The fibre is the Weyl
algebraP* Mp[ 2]. We do not introduce a new symbol but nGW.AM,[ 7] is not connected
with any point. MoreoverP* Mp[ 4] is a Weyl vector space and’/ i,j=1,...,2n,
are the coefficients of a fixed nondegenerate antisymmetric tensor. The prOjection map
7w P*M[h] — M is defined byr(vp[1]) = p. The groupG L(2n, R) is the group of real
automorphisms of ;M. The structure group of the fibre is

PGLEenR) ®---® GL(2n, R)).
=0

@8

k

Il
o

|-times

Forl = 0 we have just the identity transformation. The tensiétransforms under the group
GL(2n,R) ® GL(2n, R). Moreover, if the tensoun;; transforms under the elemegte
GL(2n,R) ® GL(2n, R), then alsav’/ transforms undes ! € GL(21, R) ® GL(2n, R).
Let (U;, ¢;) be a chart oM. The local trivializationy; is a diffeomorphism which assigns
to every point ofP* M[ ] the pointp of M and to the element @ M| 7] its coordinates
in the natural basif(d/dg;,) ® - - - ® (3/9¢;,)} determined byp;.

Let A be the vector bundle déforms on the symplectic manifold. Taking the direct
sum of tensor products of bundles

2n
P*MMA = P P*M[1] ® A*
k=0

we obtain a new algebra bundle. A product can be defined in it in terms of pineduct
of elements of the Weyl algebfa* Mp[ 2] and the external product of forms. We will
denote the new product also by. In a local chart {/;, ¢;) the elements oP* M[ 1] ® A*

are smooth tensor fields of the kind

1 2n
Aeig,oipyjrr i@ o0 7).

These objecta, ;;.... ;. j1,....j, are symmetric in the indices( . .., i;) (as elements of the
Weyl algebra) and antisymmetric ifq( . . . , ji) (as forms). For simplicity we will omit the
coordinatesq?, ..., ¢*"). The elements oP* M[ 1] A can be seen as forms with values
in the Weyl algebra.

In the special case whene A° is a smooth function oM, we obtain

aob=a-b=anb VYbeP*M[h]A.

Definition 3.7 (PrzanowskiTosiek74]). The commutator of two formg € P*M[ 7] ®
AM andb € P*M[ K] ® A*2 is a form belonging tP* M[ 1] ® A*1tk2 such that

[a,b] :=aob— (—1)1%2p o a. (3.4)
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We point out some properties of the commutator of forms with values in the Weyl algebra:

1. The straightforward consequencqg®#)is the equality
[b, a] = (—1)r*et g, b]. (3.5)
2. The Jacobi identity
(-1y2tata, [b, o] + (1) e, [a, o]
+ (=1t 2p, e, al]l = 0 (3.6)

holds for every: € P*M[ 1] ® A¥, b e P*M[h] ® A*2 andc € P*M[h] ® AR, It
is a simple matter of computation to prove this identity.

3. [a,boc] = (=1Y"*2poa,c] +[a, bl oc (3.7)
foralla € P*M[h] ® A¥, b e P*M[1] ® A*2 andc € P*M[1] @ A3,

Proof. Indeed,

[a,boc] =aoboc— (—1ftketk)p o c0q. (3.8)
Developing the r.h.s. df3.7) we get

(-1)*2p o [a, ] = (1) b oaoc — (—1f*2(—1f*3p o coa (3.9)
and

[a,bloc=aoboc—(=1)"®poagoec. (3.10)

Summing(3.9) and (3.10jve recover(3.8). [

4. The commutatord, b] of two formsa € P*M[#] ® A™ andb € P*M[#h] & A" con-
tains only terms with an odd number of derivativestin
5. The commutatord, b] of two real formsa € P* M[h] @ A™ andb € P*M[h] & A"
is purely imaginary.
Proofs of these last two properties can be founfB&j.

4. Connections in the bundleP* M[h] A

Let (M, w, V) be a Fedosov manifold equipped with a symplectic conne&fiomhose
coefficients in a Darboux atld§U,, ¢,)},cr arel;j. The connection allows us to transport
parallelly geometrical quantities dwi.

Let us define the covariant derivative of a tensgy, i ;... ;, With respect to the
variableg®. Following [85] we can write

3atsiy, . if, oo
. 511,05 J1s 0 Jk ur
8;sat,11,..4,11,]1,4..,];( =, T w Frsuat,ulz,u.,tz,jl,.u,/k

g’

ur ur
— O Dyiy i, o ipqu, jrsojk — @ Lrsja@uin,ipujo, s ji

ur
— =0 D Qg iy, ja e, jiou-
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The covariant derivative,; increases the covariance of the tensgy,.. ;. j,.....j;» SO the ob-
jectdsaiy . i jr,....jx IS @tensor ofthe range,(0+ k + 1). Onthe other hand, the covariant
derivatived:say i, ,....i), jr.....j; 1S @gain symmetric in indicesy( . . ., i;) and antisymmetric in
(j1, - - -, ji). The index § does not generate new symmetriesifa, i, i, jr.....j,- 1he co-
variant derivative is nonsymmetric is, (1, . . . , i;) and nonantisymmetric in(j1, . .., jk).
The straightforward consequence of this fact is thak. ;... i, j.....j, IS not an element of
P*M[ 1] A.

Such a result is not compatible with our expectations. But there exists a linear operator
known as the exterior covariant derivative operd8¥], which transforms-forms with
values in the Weyl algebra itk (+ 1)-forms with values iP* M[ A].

Definition 4.1. The exterior covariant derivative : P*M[1] ® A¥ — P*M[h] ®
A¥*1is a linear differential operator such that for everg P* M[ k] A

da = dq’ A dsa.
Note that in Fedosov’s publicatiof7,68]the operatof is simply called ‘connection’.

Theorem 4.1 (Fedoso\68]). The exterior covariant derivativ&in the bundleP* M[ 7] A
in a Darboux atlas{(Uy, ¢,)}ocr Can be written as

1
8a=da+ﬁ[ﬂa], (4.1)
wherea € P*M[ 7] A and
r=3rcdg (4.2)

is a1-form symmetric ir(i, j, k).
It is worth making the following remarks:

1. The formulg4.1)is valid only in Darboux coordinates, because only in such cliagts
is symmetric in all the indices.

2. We consider” like an element of* M[ 1] ® A® although we know that the elements
TIjx are not components of any tensor. This fact does not influence enaphwduct in
a Darboux chart.

3. The formula(4.1)is similar to the definition of the connection mat{B8] but, in fact,
the 1-form(4.2)is not the connection matrix. In the analyzed case the connection matrix
is infinite dimensional.

Theorem 4.2 (Fedoso\[68]). The exterior covariant derivative preserves the degree of
the forms ofP* M[ 1] A.

Proof. The derivatived does not change the degree of the formsPotM[7] A. The
commutator increases the poweridh one unit since it has two derivativesii’s, but the
fact of dividing by # finally preserves the degree.
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Theorem 4.3. For every two forma € P*M[h] ® AX andb € P*M[ 1] ® A*2 we have
daob) =daob+ (—1)ao db. (4.3)

Proof. We make the proof in Darboux coordinates.

daob): _d(aob)+—[raob] ® da o b+ (=1)%a o db
+ ﬁ(—l)l'kla o[l b] + E[F, alob=20aob+ (—1)k1a o0b. O

Note that the relatioif4.3) is a Leibniz rule for the exterior covariant derivati#end
theo-product.

Let us consider now the second exterior covariant derivali§e). As before we make
our computations in a Darboux chart. Thus,

Lina. @a

9(0a) = 9 (da + %[F, a]) =d(da)+d (i:}Li[F, a]> [F da + T

Using the following general property valid for any form
dlanb)=danb+(=1Fandb, aec A*
and remembering thdt is a 1-form, we get
d('oca)=dloa— I oda, dlaolN =daoTl + (—1faodrl (4.5)
From(3.4) and (4.5we obtain
d[I’a] = [dI’ a] — I da]. (4.6)
From the Jacobi identit{3.6)

DMOL L a]) + ()0, [ ] + ([ e, 1 =0

and using the relation

[5[a, 1T (1L O [ a],
we see that

2N [La)] = [a. (L] €. al. (4.7)
Moreover,

[N =2ro T (4.8)

Putting(4.6) and (4.7with (4.8)in (4.4)we get

d0a) = ~[dI + ~TI'o INd]
D= in: 00
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We see that the 2-form

R:F—f-%]"o]‘ (4.9)
is the curvature of the connectidn In Darboux charts we can write

3(0a) = %[R, al. (4.10)

Let us find the explicit form of the 2-form of curvatu¢é.9). We consider elements of the
Weyl algebra bundl@® * M[ %] acting on vectors. B)X we denote an arbitrary fixed vector
field onM. Hence

1 .
dr(X,X)=d (znjkxle qu)

= 100k xix gyt pagh =+ (L ALY iy gt p agt
2 3q 4\ g gk
1gary AN L

and

ih . . 1 . 1 .
Fol(X,X):= S 2.2 S hyX' dq' A S TiwX! dq*

in .
= S o I Ty X' X dq' A dg*

= —%iri{lrjljkxixf dq' A dg* = —igsz WS XX dg' A dgF
in u s u s \yivi ] k
= (T = TiT)X X dg' A dgt, (4.12)
From(4.11)and the last expression (f.12)we obtain that
R(X, X) = 3Ry X' X/ dg' A dg~, (4.13)
where
s s
Rijik = wgi (ZZ;;] - Z;},f + DL — Tk }f)

is the curvature tensd@.8) of the symplectic connectiofi;; on M. From (4.13)we see
that R; . is symmetric in the indicef, j} and antisymmetric ik, [}.

It can be proved that although we work in a Darboux chart, the relafdohb8) and (4.10)
hold in every chart oo\,

Let us introduce two operators acting on the bunfdteM([ 1] A. To make the notation
more clear we will operate on elements of the Weyl algebra acting on vectors of the tangent
spaceTM to the symplectic manifol, i.e.ai,, i jr....j, dg’t A -+ Adgs (XL, ..., XD).
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Definition 4.2. The operatos : P*M[ 7] ® A® — P*M[h] ® A*+! defined as

a
da = qu VAN (i};‘)

is known as antiderivation.
Theorem 4.4. The operatos may be written as d4-form
5= —%[a)ijxi dq’ 1. (4.14)
Theorem 4.5. The operato® lowers the degree of the elementsBiM[ 4] A of 1.
Proofs of both theorems are straightforward.

Definition 4.3. The operatos* : P*M[ 7] ® A* — P*M[h] ® A*~Lis defined as

It can be considered as the ‘opposite’ of the antiderivation operator. The syadrobtes
the inner product.

Theorem 4.6 (Fedoso\68]). The operatos™ raises the degree of the formst M[ ] A
in 1.

Proof. The operatos* exchanges the 1-forrig® into X* and does not touch, so the
degree increases in 1

Theorem 4.7 (Fedoso\68]). The operators ands* do not depend on the choice of local
coordinates and have the following properties

() linearity;
(i) 62 =(8")?=0;
(i) let us assume that indices, ..., j; are arbitrary but fixed. For the monomial

X ... XU dglt A - A dg's we have
(85" + 88X - XV dg™ A - A dgh = (U)X XU dg A A dgh.

Proof. Linearity is obvious, thus let us start from the second property. From the symmetry
of X1 ... Xldglt A --- A dg’s in X"'sitis sufficient to computé? for two fixedX's. Hence

$A(X"1X'2) = 8(X"2dg™ + X' dg'?) = dq'? A dg™* + dg'* A dg'? = 0.



336 M. Gadella et al. / Journal of Geometry and Physics 55 (2005) 316—-352

Now from the antisymmetry oKt ... X dg/t A --- A dg’s in dg’’s it is enough to find
(8%)%(dg’* A dg’?) for two fixeddg’/t anddg2. So,

(6%)%(dg’™* A dg’?) = §*(X71dg’? — X72dg’t) = X1 X/2 — X2 X71 = Q.

Toshowthe third statementwe consider the monom‘idbf. Theresultis easy to generalize
onXx'...X"dgt A--- Adg’s using the symmetry ilX*’s and the antisymmetry idg/’s.
Now

(85* + 8*8)(X" dg’) = 8(X'X7) + §*(dg' A dg’)
=X'dg' + X/ dq' + X' dg’ — X' dg' =2X"dq’. O
Definition 4.4 (Fedoso\68]). There is an operatér?! : P*M[1] ® A* — P*M[h] ®
As~1 defined by

1
——&8%a forl 0,
s7la= ) Tt 4O (4.15)
0 forl+5s=0,
wherel is the degree o in X'’s (i.e. the number oK’s) andsis the degree of the form.

Note that, in facty—1 is, up to a constant, th#& operator.

The straightforward consequence of the linearity and the decomposition on monomials
is the de Rham decomposition of the forne P* M[ h] A as shows next theorem.
Theorem 4.8 (Fedoso\68]). For everya € P*M[k] A the equality holds

a=68"Ya+ 5 sa + aoo, (4.16)
whereaqg is a function on the symplectic manifold M
Proof. For functionsagp on M the fact that the relatiofd.16) holds is evident. To show

that the de Rham decomposition is true also for elemen®*o¥[ 1] A we use the fact
thats ands—* are linear operators. Froftheorem 4.7

(68% 4+ 8*8) (X1 - - X dg™t A Adg®) = (1 4+ )Xt - X dg/ A -+ Adgh.
(4.17)

Fromdefinition (4.15)the I.h.s. of the above equation may be written as
GU+s)S T+ U+ 1)+ (s— 1) )X XU dg A+ Adgh.

Hence, from(4.17)we immediately obtaif4.16) O

The definition(4.1) of the exterior covariant derivative is based on covariant derivatives
determined by the symplectic connection. It is possible to generalize this description of
exterior covariant derivative (compare wjB9] where the term ‘connection’ is used instead
of ‘exterior covariant derivative’).
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Definition 4.5. The exterior covariant derivative: P* M[ 7] ® A° — P*M[#h] ® AL
is a linear differential operator such that for everg P*M[ 7] ® A% and f € A°

(f-a)=df Qa+ f - da. (4.18)
This definition may be extended to an arbitrérform with values inP* M| i].

Theorem 4.9([89]). There is aunique operatar: P* M[ 1] ® AX — P*M[h] ® AkF+?
satisfying

1. WfAa)=df na+ (=1Ff A da (4.19)
for every f € A%, a € P*M[1h] ® AF,
2. da = da (4.20)

fora e P*M[h] ® A°.
In a local Darboux chart we can write
o 1
da = da + E[@ al, (4.21)

where® € P* M[h] ® Alis a connection determining the derivati@riThe same defini-
tion works for 0-forms, so i € P* M[h] ® A° then

5—d+1[q> ]
a = da 7 ,al.

Indeed, the operatet + %[qﬁ, J]is linear. For every: € P*M[h] ® Aandf € A°

5a=d(f-a)+%[¢,f-a]=df~a+(—l)‘vf/\da+f~%[CD,a]

=df -a+ f - da.

Hence, the conditio4.18)is fulfilled. Now fora € P*M[%] ® A* and f € A® we see
from (4.21)that the property4.19)holds, i.e.

é(f/\a)zd(f/\a)+%[q>,f/\a] D na+ (17 f Ada

1, _ (et L o
+ih¢ (f Aa)—(-1) ih(f/\a) o)
=df/\a+(—1)sf/\da+(—l)sf/\%fboa—(—l)sf/\(—l)k%aoqb

=df na+ (1 f A <da + %[fb, a]) =df na+ (1) f A da.

Sinceda = da for everya € P*M[h] ® A° we can use the formulg.21)as definition
of the exterior covariant derivative iB* M[h] A.



338 M. Gadella et al. / Journal of Geometry and Physics 55 (2005) 316—-352
An example of the connectiof is the connection appearing in the Fedosov p#peyr
b = a)l-in dqj + ailiz,jX"lX’? dqj + .-

Analogously to the case of the connectiBri4.9)we define the curvature @f as a 2-form
with values in the Weyl algebra

R=do + %@o@. (4.22)
Of course, in Darboux coordinates for everg P* M[ k] A we can write

3(da) = %[R,a]. (4.23)
Among the properties of the curvatuRewe present the so-called Bianchi identity.

Theorem 4.10. For the curvatureRr the following relation holds

3R = 0. (4.24)
Proof.

1 1
ok 2D dR+— [@ k422 4 (dd>+ ih@o@) +=

1
[Cb,ddb—i—_(bo(b}
ih
1 1 1 1
2 1 2
=dP+ —dPo P+ (1) —PodP+ —DPod® — —(—1)dPo P
d —l—_hd o®+( )ih od +ih od ih( )°d® o

)2[q>q> o @] = (cp Dod— (1)1'2q>oq>oq>)=o. 0

(|h (|h)2
In our considerations a special role will be played by the so called ‘abelian connection’.

Definition 4.6 (Fedoso\y68]). A connectiorD (defined by4.20)) inthe bundleP* M[ h] A
is called abelian if for any sectiane C*°(P*M[h] A)

1
D?a= —[£2,d] =0.
a Ih[ al

The curvature? of the abelian connectidn is a central form. Sincg is central we deduce
that

ds2 =0.

Indeed, from the general formu(d.21)we have

D2 =dQ2 + - [F 2],
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where byI” we denote the 1-form of the abelian connection. Sifds a central form the
commutator [°, £2] disappears. From the other side, the Bianchi ider{ét24)holds for
the curvature, i.e. D2 = 0. Henceds2 = 0.

Let us assume that in a Darboux chart

1 , .

wherer is a globally defined 1-form satisfying the Weyl normalizing condition, i.e. the part
of r not containingX'’s vanishes. Let us compute the curvature of the conne¢4idb)
As we have mentioned before (4.22)

~ 1. -
Q=dl'+ —TIoTl,
ih
where
=TI+ w,'in dq’ +r. (4.26)

We can see that

1 1 | 1 S
.Q:dI"—I—dr—I—EFoF—i—%Fowin’dq]—i-%l"or—i—ﬁa)ijxldq]o['

1 P ko0, 1 i 1 1 i
—i—i—a)in dq’ o w X" dq' + i—a),-jX dgq’ or+ i—roF—I— Eroa)in dq’

h h h
+ 1 (4.27)
ihr or. .
We know that
1
dr + ﬁ1"o1“= R. (4.28)
Since our definition has been formulated in a Darboux chart we can write
1 1 1
dr+ﬁl“or+ﬁrol“:dr+ﬁ[1“,r]:8r. (4.29)
Moreover,

1 o1 i 1 P
— I ow;jX'dq’ + ﬁa)in dg’ oI’ = E[F, w;j X' dg’]

ih
1 1 li r 7.8 j
=3 2.2 5% N X" dg’ A wijdg’. (4.30)
We know that(2.3) holds, hencé4.30)equals to
8.5 X" dg* A dg’ = Iy X" dg® A dg' =0, (4.31)

becausd7, is symmetric in all the indices. Now

1 S 1 S 1 S
Ea),-jX’ dq’ or+ o w; X' dg’ = E[winl dg’,r] (“414) —4r. (4.32)
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Finally
1 i k g1 1 i j
Ewl-jX dq’ o wyX* dq' = —éa)ij dq' ndg’. (4.33)
Putting(4.28)—(4.33)nto (4.27)we obtain
1 ; . 1
.Q:—Ea)ijdq Adg’ + R—8r+ or + wror. (4.34)
The abelian property will be fulfilled, provided

1
dr=R+0or+ wror. (4.35)

Theorem 4.11 (Fedoso\68]). The equatior{4.35)has a unique solution satisfying
degr > 3, s~r=0.

Proof. From the decompositiof#.16)we obtain
r= 5718;’,

because is a 1-form we havegy = 0 ands—1r = 0. Moreovergr is a solution of(4.35)
Hence

1
r=8"YR+dr+ Zror). (4.36)

The operatos ! raises the degree by 1, 6036)is a recurrent formula starting witiT 1 R.
The proof that solutiod.36)really fulfills (4.35)and that it is unique, is more complicated
(seeitin[68]or[74]). O

Note that we have not included in the expression t&frms with degrees lower than 3.
This is due to the fact that the abelian connectidfg.26) contains terms with degrees 1
and 2 and for that, from its definition, is an object with degree deg 3.

Theorem 4.12. For the abelian connection D and two formase P* M[ 1] ® A%t and
b e P*M[h] ® A2 we have

D(aob) = Daob+ (—1)a o Db.
The proof is analogous to that dheorem 4.3

Corollary 4.1 (Fedosov[68]). The set of0-forms such that their abelian connection
vanishes forms the subalgelPad' M p[ 7] of P* M[A].
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5. The%-product on M

In former sections we have studied the structure of the Weyl algebra bundle. Thus, we
are able to introduce theproduct on the symplectic manifold.

Definition 5.1. The projectiono : P*M[h] — C°°(M) assigns to each O-forra of
P*M[ R] its partagg (according to its de Rham decompositi@gnl6)), i.e.o(a) := ago.

The following theorem holds.

Theorem 5.1(Fedoso\68]). Forany functiorugg € C°°(M) there exists a unigue section a
of C*(P*Mp[ h]) suchthat(a) = ago. The element a is defined by the recurrent formula

1
a=agp+6? (Ba + E[r, a]) .

The recurrent character of that solution can be proved analogou@y3®) (for more
details se¢68]).

The mapo gives a one-to-one correspondence betw@&{P * M p[ A]) and C*°(M).
Thena = o~ Y(agg), whereo—1 is the inverse map af. This map provides a quantization
procedure as follows.

Definition 5.2 (Fedosov[68]). Let F1, F» be two C°°(M)-functions. Thex-product is
defined as

F1 % Fp := o(o Y(F1) 0 0~ 1(F)). (5.1)

This x-product can be considered as a generalization of the Moyal product of Weyl type
defined forM = R?*. It has the following properties:

1. Invariance under Darboux transformations. In fact,stf@oduct is invariant under all
smooth transformation of coordinatesdnHowever, the definitions of exterior covari-
ant derivative$ andD cannot be written in the forr(d.1) and (4.25)respectively.

2. Inthe limith — 0T thex-product turns into the commutative point-wise multiplication
of functions, i.e.

lim Fi%x Fo= F1- F>. (5.2)
h—0t

Indeed, since ir(5.1) only terms not containingd’’s and #", n > 1, are taking into
account we can see that, in fact, only the terms of degree zero are essential in the product
o~1(F1) o 71(F2). From the third property of the-product(3.3) we deduce that the

part ofo~1(Fy) o 0~ 1(F>) with degree zero is justy - F». Hence, we obtail5.2),

3. The multiplication(5.1) is associative but noncommutative.
Effectively, fromtheorem (5.1}he relation

ol )=o) = Fi=F
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holds. It means that

o H(F1L* F2) % Fa)=0"Y(F1% F2) 0o 0 {(F3)=(c"*(F1) 0 0 }(F2)) 0 0 }(F3).
(5.3)

Since theo-product is associative the r.h.s.(6f3) can be written as

o H(F1) o (07 F2) 0 0 H(F3))=0"1(F1) 0 0 ((F2 * F3))
=0 Y (Fy x (F> % F3)).

Hence
(F1% F2) % F3 = F1 % (F2 % F3) VF1, F2, F3 € C®°(M).

4. WhenM = R? the product defined above is just the Moyal product of Weyl type.
Instead of proving this statement we will analyze this case in the next section.

The properties mentioned above show thatsthgroduct constructed according to the
Fedosov idea is a natural generalization ofsthgroduct in the trivial case whell = R%"
(Moyal-product). Several different properties of theroduct may be found ify0] or [86].

In this paper we have only considerg¢products of the Weyl type. Other kinds &f
products, whose geometrical origin is the same that ottpeoduct of the Weyl type, were
analyzed if74].

The existence of many-products on the same symplectic manifold is closely related to
the equivalence problem efproducts. Twox-products«; andx; are said to be equivalent
iff there exists a differential operatdrsuch that for every two functions;, F» of C*°(M),
for which expressions appearing below have sense, the following relation holds

Fis1 Fo = T YT Fy %0 TF). (5.4)

It has been proved if91] that all thex-products on a symplectic manifold are equivalent
to the Weyl typex-product constructed according to the Fedosov recipe. For more details
about the equivalence problem:efproducts sef91-93]

The definition of thex-product is not sufficient to study completely most of the physical
problems. To solve the eigenvalue equation for an observable or to find its average value we
must know how to define the states. There is not a general answer to this question. It seems
that in the framework of the Fedosov formalism the states are described by functénals
over some functions defined on the phase space of the system but, in fact, knowledge about
such objects is rather poor.

Topics connected with the representation problem of a quantum state on a phase
space such as ‘traciality’ or closeness of th@roduct can be found, for instance, in
[68,94,95]

The Fedosov algorithm is not the only way to defiproduct in nontrivial spaces.
Several examples efproducts on nontrivial spaces may be foundidf].
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6. Examples

In this section we present three systems where the Fedosov construction is accomplished.
The results obtained in two of them are known from the ‘traditional’ quantum mechanics.
The third one, recently developed by[88], does not have its counterpart in the formalism
of operators in a certain Hilbert space.

6.1. Cotangent bundI&*R”

In this first example, we consider the simple case of a physical system whose phase space
is the vector spaceR?", ). This space is covered with one chak(, o), in which the
symplectic form takes its natural shape, i.e.

n
=Y dg""" rdq'. (6.1)
i=1

We choose the symplectic connection in such a way that all the coefficients variigh,on
i.e. I =0,1<1 j k < 2n. Hence the symplectic curvature tendt); disappears.
The abelian connectiof@.26)in the Weyl bundle is given by

f' = a),-in dqj
and its curvature is a central for(#.34)
1 n

_Equn-i-i /\dq’
i=1

2 =

Hencey = 0. It means that for ever§ € C°°(R?*) according tolrheorem 5.4ve can write

1 MF
-1 -1 i i
o (F)=F+§"(dF)= . — X't Xt

From(1.3), (3.2) and (6.1yve can see that
o (F1) 0 0 (F2) = F1(Q + X) #w F2(Q + X), (6.2)

whereQ = (4%, ..., ¢%") andX = (X1, ..., X?). The symbol &’ denotes the-product
(1.3)of Weyl type onR?". We can write the equality relation (6.2)becaus®?* andT R
are isomorphic.

Now from (5.1) we obtain that

F1% Fp = o(F1(Q + X) *w F2(Q + X)) = F1(Q) *w F2(Q).

We conclude that in case the symplectic space is jRét, (), the «-product computed
using the Fedosov method is exactly the usuptoduct of the Weyl type.
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6.2. Harmonic oscillator
Letus consider a system with phase sp&2 (), wherew = dp A dg, and Hamiltonian

2 2

p mq
H="—+—.

2m+ 2

In a chart with coordinatesy( ¢) all the coefficients of the connectidi, i, j, k = 1, 2,
vanish. In the new Darboux coordinatd4 ¢), related with the old oneg(¢) according
to

q= \/fsimb, p = ~2mH cosg,
the symplectic form is rewritten as

w=dH N dgp.
From the transformation rule for connections

dq" 3q° dq'
90" 907 90*

aqs 82qr
301 90790k

Fijk(Q) = Iy (Q) + s (('I)

we immediately obtain that the symplectic connection 1-form in coordinaes)(is given
by

1 2vy2 1 1y2 1yl
= _—X°X%d¢ + -—X'X?dH + HX'* X dH.
4H ** 2m *

Obviously, its curvature vanishes. That implies that alse 0 (see(4.36) and the sym-
plectic curvature in the Weyl algebra bundle is

2= —3dH A dg.
Moreover, the abelian connection is
I'=XY¢ — X?dH + I

Let us look for the eigenvalues and eigenfunctions of the HamiltoHiam coordinates
(H, ¢). The eigenvalue equation takes the form

H* Wg(H, ¢) = E - Wg(H, ¢),
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where Wg(H, ¢) is a functional representation of an eigenstate with eigenvalugom
Theorem 5.1 we can write

1
o Y(H) = H+ x>+ HX'x' + ﬁXZX2

and
_ Wg Wg oWg 132WE
1 1 2 1v1 1v1
Wg)=Wg+ —X 1+ —= x>+ H—xIx'+ 2 ——"x1x
o (We) = We+ =5 oH oH 2 g2
_ 1 WE a0 W 142, 1 WE 5.2 }32WEX2X2
2H 3¢ dpoH 4H 3H 2 9H?
183WE 1vlvl
+= xixtxt4 ...,
6 993

The series~ (W) is infinite but only the terms of deg 2 are essential because'(H)
has degree 2. Computing 1(H) o o ~1(Wg) and projecting the product on the phase space
we finally obtain that

B2 oWe K2 ?Wg  ihaWp  h? 9*Wg

HxWp(H ¢) = (H— EyWp — — £ _ L g2 78 BIRE
*WelH.9) = (H = EWe = o = 21502 ~ 2 09~ 16H 002

=0. (6.3)

Since the functiotWy is real we see that

ih oWg
2 03¢

Thus, Wg depends only ol and may contairk in the denominator. It is possible that
for some solutions of6.3) the seriess—X(Wg) is not well defined. Such functions are
not admissible because for them the product(H) o o~ 1(Wx) does not exist. The only
acceptable solutions ¢6.3) are Wigner functions

W, (H) = (-1 exp(_zH) L, (4:) ,

whereL, is a Laguerre polynomial, and the eneigys quantized
E, =h(n+%), n=0,12,...

This result is well known from traditional quantum mechanics. It can be also obtained in
terms of the Moyal produdtL.4) [12]
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6.3. Two-dimensional phase space with constant curvature tensor

Let us consider the phase spat& (w). Topologically it is homeomorphic t&2. We
cover it with an atlas containing only one chak(, o). In this chart the symplectic form

is, as usualw = dp A dg, whereq denotes the spatial coordinate gmtéhe momentum
conjugate tay. We assume that in the chaR{, o) the connection 1-form is

r=ipx*xldg. (6.4)

The connectiog6.4)is well defined globally since we cover the symplectic manifiitl )
with only one chart. The curvature 2-form

R=-1xXxYdg A dp.
Hence, in the charfR?, o) the curvature tensor has only one nonvanishing component

Ri112= —Ri121= —3

1112 = —K1121= —7.

The Ricci tensor is

K11 = %
Since the connection 1-form is defined by the expreséof), we are able to build the
abelian connection. Let us compute the seriekefined by(4.36) The first term in the
recurrent expressiofd.36)is

§7'R = 3x1X1x%dg — 3x XX dp.
After some computations (for details §86]) we obtain that the abelian connection is

I'=—xYdp+ X?dg + 3pX*Xtdg — 1x X X dp + 1 X X*X%dq

1 vlylylylyl 1 vlylylyly?2
+ X XIXIXIX Y dp — Sx XXX X2 dg

1 ylylylylylylyl 1 yvlylylylylyly?
— 102X XX XXX X"dp + g X X X" X" X" XX dg — - - -. (6.5)

Note that the abelian connection is an infinite series, the Planck consiars not appear
in any term of the series, and in the seri€d.26)only two kind of terms are present:

(_1)m+1a2m+1(X1)2m X2 dg
and

(1) azm+1(XH?" L dp, m e N — {0},
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whereay,, 11 is related to the so called Catalan numbers and is given by

2 (2m-2\ 1 . 66)
Gmt=\m—1 )16 "= '

The expressiolf6.5) allows us to write eigenvalue equations for observables. Let us start
with constructing the explicit form of the eigenvalue equation for mometurhe general
form of this equation is

p* Wplg, p) = p - Wp(q, p), (6.7)

wherep denotes the eigenvalue pindWpy(g, p) is the Wigner function associated to the
eigenvalug. We find that

oY p) = p+ X2+ Ipx Xt 4 xtxix? — Lox1x1x1x1x?

+ 1o XX xIxIxx1x2 —

Every coefficients appearing in the term xt...xt X2 for 0, can be
y ' 2m+1 app g 2m+1 o m >
expressed in the form

bomtr = (—1)" Magmy1,

whereay,, 11 is defined by(6.6).

Much more complicated is to find the general formula of the serid§W),) representing
the Wigner functionWy(q, p). After long considerations we conclude that the function
Wp(g, p) depends only orp and that the eigenvalue equation % (p) is the infinite
differential equation

d*Wo(p) 1 4d*Wp(p)
<Wp() 5 d]fz 128h4d;‘_”'>=p'w‘)(p)'

The eigenvalue equation for momentpis a differential equation of infinite degree. There

is no general method for solving such equations. Therefore, we decided to look for the
solution of the eigenvalue equation pf. As p - p = p = p the Wigner function fulfilling

Eq. (6.7)satisfies also the relation

p%* Wp(p) = p*Wp(p).
We can see that the above relation is the modified Bessel equation

h2 2d Wp(P) hz d p(P)
4 dp A 4 dp

The general solution db.8)is a linear combination of the following form

+ (p? — pH)Wp(p) = 0. (6.8)

2p 2p
Wp(P) A- [21p/h ﬁ +B- K21p/h ﬁ
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with Irp/r(2p/h) the modified Bessel function with complex parametép/2 and
Kaip/n(2p/h) the modified Bessel function of second kind with parametgy2. This
solution is defined for argumentsg{2h) > 0 (se€97]). Note that the deformation param-
eterh appears in the denominator of the argument. We must be very careful because this
fact may cause the nonexistence of the serie’s(Wp(p)).

The functionA - I, /5 (2p/R) is complex. Its real part grows up to infinity fer— oo
and, hence, it is not normalizable. The imaginary parlgf;»(2p/h) is proportional to
Kaip/n(2p/h). Thus, the only physically admissible solution(6f8)is

2
Wp(p) = B - Koip/n (;) .

However, solutions defined on the wh&are required. Itisimpossible to define the solution
of the equatior{6.8) on the whole axis. The problem is that the modified Bessel function of
second kind is not defined for the argument vaiue 0. Moreover, lim),_, o+ Kaip/5 (%”)
does not exist.

Letus assume that the Wigner functidi(p) is a generalized function over the Schwartz
spaceS(p) of test smooth functions tending to 0 when— +oo faster than the inverse of
any polynomial.

We define the Wigner functioW,(p) as:

1.p<O

4 pr —2p
— cosh—K»; — | for 0,
Wo(p) = { mh ) le/h< h ) p=

0 forp > 0.
2.p>0
0 forp <0,
Wo(p) =4 4 pm 2p
— cosh?Kzl-p/h e forp > 0.
3.p=0
2 -2
—K (p) forp <0,
wh h
Wop) =\ 5 2p
—Ko | — f 0
= 0 ( 3 ) orp>

The example analyzed before is a particular choic® of the 2-form of curvature

R =+G?x*XxYdg A dp, (6.9)
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whereG is some positive constant. The solutions of the equgta®) are divided in two
classes foR = G°X*XYdg A dp and R = —G?X' X dq A dp, respectively. FOG — 0
both of them tend té(p — p).

The eigenvalue equation for positigriakes the form

q * Wq(g, p) = qWq(q. p).

whereq denotes the eigenvalue of the positmprit can be separated in two parts: the real
part

q - Wq(g. p) = aWq(q. p) (6.10)
and the imaginary part

1. 0Wq(g, p) | 1 ,39*Wa(g, p)

—pA K ...=0. 6.11

2 p + 96 ap3 + (6.11)

Let us start with Eq(6.11) Multiplying it by 2/4, introducing a new variable= +/2p/h
and definingwq(g, z) = dWq(g, z)/9z, we obtain the formula

1 Pwqlg.p)
24 972

This is, in fact, a homogeneous linear differential equation of infinite degree. Its solution
neither depends on the paramedaror the factoiG. Since the ling;_, o+ wq(g, z) must be

0 the only admissible solution ¢6.12)is wq(g, z) = 0 for everyg. We see that the Wigner
eigenfunctionWq(q, z) depends only og. From(6.10)we immediately obtain that

wq(g, p) + . =0. (6.12)

Wq(g.2) = 8(g —a) Vva.

Similar considerations can be done for any arbitrary curvature 2-Rafithe form(6.9).
The final result will be the same, i.e. the eigenfunctidigy) depend only o and have
the same form like in the case of the flat sp&2& with I" = 0.
Itis well known[91,92]that on a two-dimensional symplectic manifold all thproducts
are equivalent. Thus, for every two produstsandsx; the relation(5.4) holds. It means
that thex-product considered in this example is equivalent to the Moyal prqdug} That
is true but we have not algorithm which enables us to construct the op@tdtom the
equation(5.4).We cannot transform Wigner eigenfunctions and eigenvalues solutions of the
eigenvalue equation

F(p,q) *1 Wri(p, ) = F1- Wr1(p, q)
into eigenvalues and eigenfunctions of

F(p,q) *2 Wr2(p, q) = F2- Wr2(p. q)

though we are aware of the existence of some relation between them.
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